Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters.
نویسنده
چکیده
Two-dimensional spatial linear filters are constrained by general uncertainty relations that limit their attainable information resolution for orientation, spatial frequency, and two-dimensional (2D) spatial position. The theoretical lower limit for the joint entropy, or uncertainty, of these variables is achieved by an optimal 2D filter family whose spatial weighting functions are generated by exponentiated bivariate second-order polynomials with complex coefficients, the elliptic generalization of the one-dimensional elementary functions proposed in Gabor's famous theory of communication [J. Inst. Electr. Eng. 93, 429 (1946)]. The set includes filters with various orientation bandwidths, spatial-frequency bandwidths, and spatial dimensions, favoring the extraction of various kinds of information from an image. Each such filter occupies an irreducible quantal volume (corresponding to an independent datum) in a four-dimensional information hyperspace whose axes are interpretable as 2D visual space, orientation, and spatial frequency, and thus such a filter set could subserve an optimally efficient sampling of these variables. Evidence is presented that the 2D receptive-field profiles of simple cells in mammalian visual cortex are well described by members of this optimal 2D filter family, and thus such visual neurons could be said to optimize the general uncertainty relations for joint 2D-spatial-2D-spectral information resolution. The variety of their receptive-field dimensions and orientation and spatial-frequency bandwidths, and the correlations among these, reveal several underlying constraints, particularly in width/length aspect ratio and principal axis organization, suggesting a polar division of labor in occupying the quantal volumes of information hyperspace.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Two-dimensional affine frames for image analysis and synthesis
An affine-group-based design methodology of Gabor-type filter bank is presented for the purpose of image analysis and synthesis. Various tessellations of the combined spatial-feature space are considered. We combine ideas introduced by Daugman [J.G. Daugman, Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters, J. ...
متن کاملIntegration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery
The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...
متن کاملLocal orientation analysis in images and image sequences using steerable filters
In this thesis, we address the issue of local orientation analysis using steerable filters. From the standpoint of the sampling theory, current orientation steerable filters sample the spectrum of the orientation space with Dirac functions. According to the well known uncertainty principle, we cannot simultaneously localize a signal both in the spatial domain and in the spectral domain exactly....
متن کاملCurved feature metrics in models of visual cortex
We study the relation between maps of a high-dimensional stimulus manifold onto an essentially two-dimensional cortical area and low-dimensional maps of stimulus features such as centroid position, orientation, spatial frequency, etc. Whereas the former safely can be represented in a Euclidean space, the latter are shown to require a Riemannian metric in order to reach qualitatively similar sta...
متن کاملProvide a Deep Convolutional Neural Network Optimized with Morphological Filters to Map Trees in Urban Environments Using Aerial Imagery
Today, we cannot ignore the role of trees in the quality of human life, so that the earth is inconceivable for humans without the presence of trees. In addition to their natural role, urban trees are also very important in terms of visual beauty. Aerial imagery using unmanned platforms with very high spatial resolution is available today. Convolutional neural networks based deep learning method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the Optical Society of America. A, Optics and image science
دوره 2 7 شماره
صفحات -
تاریخ انتشار 1985